Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble Model
نویسندگان
چکیده
Low-resource countries can greatly benefit from even small increases in efficiency of health service provision, supporting a strong case to measure and pursue efficiency improvement in low- and middle-income countries (LMICs). However, the knowledge base concerning efficiency measurement remains scarce for these contexts. This study shows that current estimation approaches may not be well suited to measure technical efficiency in LMICs and offers an alternative approach for efficiency measurement in these settings. We developed a simulation environment which reproduces the characteristics of health service production in LMICs, and evaluated the performance of Data Envelopment Analysis (DEA) and Stochastic Distance Function (SDF) for assessing efficiency. We found that an ensemble approach (ENS) combining efficiency estimates from a restricted version of DEA (rDEA) and restricted SDF (rSDF) is the preferable method across a range of scenarios. This is the first study to analyze efficiency measurement in a simulation setting for LMICs. Our findings aim to heighten the validity and reliability of efficiency analyses in LMICs, and thus inform policy dialogues about improving the efficiency of health service production in these settings.
منابع مشابه
Correction: Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble Model.
The first author’s name is cited incorrectly. The correct name for the citation is: Di Giorgio L. The correct citation is: Di Giorgio L, Flaxman AD, Moses MW, Fullman N, Hanlon M, Conner RO, et al. (2016) Efficiency of Health Care Production in Low-Resource Settings: A MonteCarlo Simulation to Compare the Performance of Data Envelopment Analysis, Stochastic Distance Functions, and an Ensemble M...
متن کاملA New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using...
متن کاملDesigning a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)
This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs are characterized by random triangular fuzzy variables with normal distribution, in which ...
متن کاملUncertainties due to Fuel Heating Value and Burner Efficiency on Performance Functions of Turbofan Engines Using Monte Carlo Simulation
In this paper, the impacts of the uncertainty of fuel heating value as well as the burner efficiency on performance functions of a turbofan engine are studied. The mean value and variance curves for thrust, thrust specific fuel consumption as well as propulsive, thermal and overall efficiencies are drawn and analyzed, considering the aforementioned uncertainties based on various Mach numbers at...
متن کاملUtilizing Monte Carlo Method for Ranking Extreme Efficient Units in Data Envelopment Analysis
Data envelopment analysis (DEA) is a mathematical programming method for calculatingefficiency of decision making units (DMU). In calculating the efficiency score of unitsthrough DEA we may come up with some efficient units. But the question is among theseefficient units which of them is better. As we know, it is possible to rank inefficient unitsthrough efficiency score; however, for ranking e...
متن کامل